Estimate of favorable temperature for the development of poultry farming

Authors

DOI:

https://doi.org/10.6008/CBPC2179-6858.2020.006.0010

Keywords:

Ambience, Animal welfare, Probability density functions

Abstract

The present study aimed to adjust the temperature data that occurred in the municipality of Santo Antônio de Leverger-MT, applying several Probability Density Functions. The historical series of minimum and maximum daily temperatures, obtained from the Meteorological Database for Teaching and Research (BDMEP) of the National Institute of Meteorology, were analyzed. For the research, the period from January 1987 to December 2019 was considered, registered at the Conventional Meteorological Station Padre Ricardo Remetter. With the aid of the EXCEL spreadsheet and the R program, the main descriptive statistics of the data were obtained, based on the position and dispersion measures and the box plot diagrams for each month and type of extreme temperature were elaborated in order to verify the characteristics of the distribution. Then, the monthly data for each temperature were grouped into ten (10) classes, adopting the Sturges Rule, to facilitate the definition of the probabilistic model. The minimum and maximum temperature data were adjusted to the five probabilistic distributions, as follows: Normal, Normal Log, Gamma, Gumbel, and Weibull. Subsequently, the data adherence to these distributions was verified by applying the Chi Square test. It was found that the values of the minimum daily temperature adjusted adequately to the Normal distribution for all months, however, the values of maximum temperature only in the months of January to April and from October to December. The months from May to September were modeled using the Gamma distribution. Therefore, based on the representative distributions of the months for each temperature, a stacked bar graph was prepared to estimate the probability of the monthly temperature, classified as very cold, suitable, and extremely hot for poultry farming. It was concluded that The Probability Density Functions (FDP) were adequate, accurate and reliable for adjusting the daily data of extreme temperatures (minimum and maximum) in each month of the year, in the municipality of Santo Antônio de Leverger-MT. The obtained models made it possible to define favorable limits for the development of poultry and to estimate the probability of occurrence of the three temperature categories in this municipality. The adopted methodology was presented as an excellent tool to predict the values of minimum and maximum temperatures throughout the year in that municipality, assisting in the planning of the construction of aviaries and their respective ventilation system.

Downloads

Author Biographies

Pedro Hurtado de Mendoza Borges, Universidade Federal de Mato Grosso

Possui graduação de Engenharia em Mecanização da Produção Agropecuária pela Universidade Central de Las Villas em Cuba (1983), revalidado junto à UFLA, especialidade em Matemática e Estatística pela Universidade Central de Las Villas em Cuba (1986), doutorado em Máquinas Agrícolas pela Universidade de Rostock na Alemanha (1991), revalidado junto à UNICAMP (1998) e Pós-Doutorado em Mecanização Agrícola pela Universidade Federal de Viçosa (2008). Atualmente é professor titular da Universidade Federal de Mato Grosso. Tem experiência na área de Engenharia Agrícola, com ênfase em Máquinas e Mecanização Agrícola e Construções Rurais, atuando principalmente no desempenho de máquinas agrícolas e zootécnicas, sistemas de preparo do solo, elaboração de modelos estatísticos e métodos quantitativos para as ciências agrárias, conforto ambiental, lógica fuzzy e redes neurais. Também, dedica-se ao controle estatístico de processos e à análise de confiabilidade e sobrevivência nas ciências agrárias.

Zaíra Morais dos Santos Hurtado de Mendoza, Universidade Federal de Mato Grosso

Possui graduação em Engenharia Florestal pela Universidade Federal de Viçosa, mestrado e doutorado em Ciência Florestal pela Universidade Federal de Viçosa. Atualmente é professora associada da Universidade Federal de Mato Grosso, Campus Cuiabá. Tem experiência na área de Recursos Florestais e Engenharia Florestal, subárea de Tecnologia e Utilização de Produtos Florestais. 

Pedro Hurtado de Mendoza Morais, Universidade Federal de Mato Grosso

Acadêmico do curso de Agronomia pela Universidade Federal de Mato Grosso, Campus Universitário de Cuiabá. Atuou como monitor na disciplina de Informática na Agricultura no período de 2018 a 2019 e foi bolsista do Programa Institucional de Bolsas de Iniciação Científica (PIBIC) da UFMT no período de 2019 a 2020. Atualmente, desempenha a função de monitor na disciplina de Hidrologia Agrícola e na disciplina de Anatomia e Fisiologia dos Animais Domésticos.

Published

2020-07-06

Most read articles by the same author(s)